import numpy as np a = [60, 28, 49, 81] b = [55, 634, 704, 2020] # create numpy array with list, specifying type as integer array_single = np.array(a, dtype='i') array_single # [60 28 49 81] # create numpy array with many lists array_many = np.array([a, b]) array_many # [[ 60 28 49 81] # [ 55 634 704 2020]] # dimension and shape array_many.ndim # 2 array_many.shape # (2, 4) # create numpy array with zeros array_zeros = np.zeros(4) array_zeros # [ 0. 0. 0. 0.] # create 2x3 numpy array with ones array_ones = np.ones((2, 3)) array_ones # [[ 1. 1. 1.] # [ 1. 1. 1.]] # create numpy array with range from 0 to 50 array_range = np.arange(0, 50) array_range # [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 # 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49] # create numpy array with ten numbers spaced between 0 and 10 (linear) array_linear = np.linspace(0, 1, 10) array_linear # [ 0. 0.11111111 0.22222222 0.33333333 0.44444444 0.55555556 # 0.66666667 0.77777778 0.88888889 1. ] # create numpy array with ten numbers spaced between 1 and 10 (logarithmic) array_log = np.logspace(0, 1, 10) array_log # [ 1. 1.29154967 1.66810054 2.15443469 2.7825594 # 3.59381366 4.64158883 5.9948425 7.74263683 10. ] # get second to third value array_single[1:3] # [28 49] # reverse order array_single[::-1] # [81 49 28 60] # multidimensional slicing (3rd and 4th column, both rows) array_many[0:2, 2:4] # [[ 49 81] # [ 704 2020]] # array operations array_range.mean() # 24.5 array_range.sum() # 1225 array_many.min() # 28 array_many.max() # 2020 np.sin(array_many) # [[-0.30481062 0.27090579 -0.95375265 -0.62988799] # [-0.99975517 -0.56605794 0.27947339 0.04406199]] np.multiply(a, b) # [3300 17752 34496 163620] np.sqrt(b) # [7.41619849 25.17935662 26.53299832 44.94441011] # minimum value in each column np.minimum(a, b) # [55 28 49 81] # sum of axis (columns) np.sum(array_many, axis=1) # [218 3413]